If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+4t-16=0
a = 1; b = 4; c = -16;
Δ = b2-4ac
Δ = 42-4·1·(-16)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{5}}{2*1}=\frac{-4-4\sqrt{5}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{5}}{2*1}=\frac{-4+4\sqrt{5}}{2} $
| 4p-25/2=4 | | 3(x-2)=6(5=x) | | 3(x)-23=28 | | 2m=-2m+24 | | 9x-2x+68=9x+40 | | 28=-9+4(z-3) | | -15+x-3=16-14+7 | | (n/2)+5=15 | | 8c=72=(12c-72)-24c | | 3|4-5x|-1=11 | | 2(x+30)÷4=162 | | 15=-7+9(a-3) | | 2x+19=5(x-2) | | a+(–5)=12 | | 2(5-d)=-24d | | w/3+12=41 | | (556/2)+15=x | | 1+6n=-11-4n+4n | | 14=y/4+8 | | 28=-9-8+5x | | 2=x+66 | | 2x-9x+68=9x+40 | | 2x+5x-4=7(x | | 2=3g−1 | | -108=8b | | 0.02r+0.01=0.15r^2 | | -98=7{1+3n | | 124x=744 | | 2.5m+4=10 | | (10x-10)=(5x+40) | | 2/1/2m+4=10 | | 2x-95-8x=31 |